Atiyah–Patodi–Singer \( \eta \)-Invariant and Invariants of Finite Degree


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Let η be the Atiyah–Patodi–Singer invariant considered on smooth, compact, oriented, threedimensional submanifolds of ℝn, and let A be an additive subgroup of ℝ. The problem of computing the degree of invariants of the form η mod A is examined. Here, the functional definition of invariants of finite degree is used. (A similar approach is used in S. S. Podkorytov’s paper “Quadratic property of the rational semicharacteristic.”) The main results are as follows. If 1 ∉ A, then the degree is infinite. If \( \frac{1}{3}\in A \), then the degree is equal to 1. Bibliography: 10 titles.

Об авторах

A. Trefilov

St.Petersburg State University

Автор, ответственный за переписку.
Email: aleksejtref@yandex.ru
Россия, St.Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).