Atiyah–Patodi–Singer \( \eta \)-Invariant and Invariants of Finite Degree
- Авторы: Trefilov A.N.1
-
Учреждения:
- St.Petersburg State University
- Выпуск: Том 212, № 5 (2016)
- Страницы: 622-642
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/237112
- DOI: https://doi.org/10.1007/s10958-016-2694-4
- ID: 237112
Цитировать
Аннотация
Let η be the Atiyah–Patodi–Singer invariant considered on smooth, compact, oriented, threedimensional submanifolds of ℝn, and let A be an additive subgroup of ℝ. The problem of computing the degree of invariants of the form η mod A is examined. Here, the functional definition of invariants of finite degree is used. (A similar approach is used in S. S. Podkorytov’s paper “Quadratic property of the rational semicharacteristic.”) The main results are as follows. If 1 ∉ A, then the degree is infinite. If \( \frac{1}{3}\in A \), then the degree is equal to 1. Bibliography: 10 titles.
Ключевые слова
Об авторах
A. Trefilov
St.Petersburg State University
Автор, ответственный за переписку.
Email: aleksejtref@yandex.ru
Россия, St.Petersburg
Дополнительные файлы
