Inscribed and Circumscribed Polyhedra for a Centrally Symmetric Convex Body
- Авторы: Makeev V.V.1, Netsvetaev N.Y.1
-
Учреждения:
- St.Petersburg State University
- Выпуск: Том 212, № 5 (2016)
- Страницы: 552-557
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/237074
- DOI: https://doi.org/10.1007/s10958-016-2687-3
- ID: 237074
Цитировать
Аннотация
We construct new polyhedra such that some of their similar or affine images can be inscribed in (or circumscribed about) every centrally symmetric convex body.
One of the main theorems is as follows. If K is a centrally symmetric, three-dimensional, convex body, then either an affine-regular dodecahedron is inscribed in K or there are two affine-regular dodecahedra D1 and D2 such that nine pairs of opposite vertices of Di, i = 1, 2, lie on the boundary of K. Furthermore, the remaining two vertices of D1 lie outside K, while the remaining two vertices of D2 lie inside K.
Ключевые слова
Об авторах
V. Makeev
St.Petersburg State University
Автор, ответственный за переписку.
Email: mvv57@inbox.ru
Россия, St.Petersburg
N. Netsvetaev
St.Petersburg State University
Email: mvv57@inbox.ru
Россия, St.Petersburg
Дополнительные файлы
