Polygons Inscribed in a Convex Figure


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The paper contains a survey of results about the possibility of inscribing convex polygons of particular types into a plane convex figure. It is proved that if K is a smooth convex figure, then K is circumscribed either about four different reflection-symmetric, convex, equilateral pentagons or about a regular pentagon.

Let S be a family of convex hexagons whose vertices are the vertices of two negatively homothetic equilateral triangles with common center. It is proved that if K is a smooth convex figure, then K is circumscribed either about a hexagon in S or about two pentagons with vertices at the vertices of two hexagons in S. In the latter case, the sixth vertex of one of the hexagons lies outside K, while the sixth vertex of another one lies inside K.

Об авторах

V. Makeev

St.Petersburg State University

Автор, ответственный за переписку.
Email: mvv57@inbox.ru
Россия, St.Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2015

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).