Testing Isomorphism of Central Cayley Graphs Over Almost Simple Groups in Polynomial Time
- Авторлар: Ponomarenko I.1, Vasil’ev A.2
-
Мекемелер:
- St.Petersburg Department of the Steklov Mathematical Institute
- Sobolev Institute of Mathematics, Novosibirsk State University
- Шығарылым: Том 234, № 2 (2018)
- Беттер: 219-236
- Бөлім: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/241818
- DOI: https://doi.org/10.1007/s10958-018-3998-3
- ID: 241818
Дәйексөз келтіру
Аннотация
A Cayley graph over a group G is said to be central if its connection set is a normal subset of G. It is proved that for any two central Cayley graphs over explicitly given almost simple groups of order n, the set of all isomorphisms from the first graph onto the second can be found in time poly (n).
Авторлар туралы
I. Ponomarenko
St.Petersburg Department of the Steklov Mathematical Institute
Хат алмасуға жауапты Автор.
Email: inp@pdmi.ras.ru
Ресей, St.Petersburg
A. Vasil’ev
Sobolev Institute of Mathematics, Novosibirsk State University
Email: inp@pdmi.ras.ru
Ресей, Novosibirsk
Қосымша файлдар
