Pseudocompactness, Products, and Topological Brandt λ0 -Extensions of Semitopological Monoids


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In the present paper, we study the preservation of pseudocompactness (resp., countable compactness, sequential compactness, ω -boundedness, totally countable compactness, countable pracompactness, sequential pseudocompactness) by Tychonoff products of pseudocompact (and countably compact) topological Brandt \( {\lambda}_i^0 \) -extensions of semitopological monoids with zero. In particular, we show that if \( \left\{\left({B}_{\uplambda_i}^0\left({S}_i\right),\kern0.5em {\uptau}_{B\left({S}_i\right)}^0\right):i\in \mathrm{\mathcal{I}}\right\} \) is a family of Hausdorff pseudocompact topological Brandt \( {\uplambda}_i^0 \) -extensions of pseudocompact semitopological monoids with zero such that the Tychonoff product \( \prod \left\{{S}_i:i\in \mathrm{\mathcal{I}}\right\} \) is a pseudocompact space, then the direct product \( \prod \left\{\left({B}_{\uplambda_i}^0\left({S}_i\right),\kern0.5em {\uptau}_{B\left({S}_i\right)}^0\right):i\in \mathrm{\mathcal{I}}\right\} \) endowed with the Tychonoff topology is a Hausdorff pseudocompact semitopological semigroup.

Об авторах

O. Gutik

I. Franko National Lviv University

Email: Jade.Santos@springer.com
Украина, Lviv

O. Ravsky

Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, Ukrainian National Academy of Sciences

Email: Jade.Santos@springer.com
Украина, Lviv

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).