Criteria of Divergence Almost Everywhere in Ergodic Theory


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In this expository paper, we survey nowadays classical tools or criteria used in problems of convergence everywhere to build counterexamples: the Stein continuity principle, Bourgain’s entropy criteria, and Kakutani–Rokhlin lemma, the most classical device for these questions in ergodic theory. First, we state a L1-version of the continuity principle and give an example of its usefulness by applying it to a famous problem on divergence almost everywhere of Fourier series. Next we particularly focus on entropy criteria in Lp, 2 ≤ p ≤ ∞, and provide detailed proofs. We also study the link between the associated maximal operators and the canonical Gaussian process on L2. We further study the corresponding criterion in Lp, 1 < p < 2, using properties of pstable processes. Finally, we consider Kakutani–Rokhlin’s lemma, one of the most frequently used tools in ergodic theory, by stating and proving a criterion for a.e. divergence of weighted ergodic averages. Bibliography: 38 titles.

Об авторах

M. Weber

IRMA, Université Louis-Pasteur et C.N.R.S.

Автор, ответственный за переписку.
Email: michel.weber@math.unistra.fr
Франция, Strasbourg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).