Exact and Approximate Solutions of the Spectral Problems for the Differential Schrödinger Operator with Polynomial Potential in ℝK, K ≥ 2


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We consider spectral problems for the Schrödinger operator with polynomial potentials in ℝK, K ≥ 2. By using a functional-discrete (FD-)method and the Maple computer algebra system, we determine a series of exact least eigenvalues for the potentials of special form. In the case where the traditional FD-method is divergent (the degree of the polynomial potential exceeds 2 at least in one variable), we propose a modification of the method, which proves to be quite efficient for the class of problems under consideration. The obtained theoretical results are illustrated by numerical examples.

Об авторах

V. Makarov

Institute of Mathematics, Ukrainian National Academy of Sciences

Автор, ответственный за переписку.
Email: makarov@imath.kiev.ua
Украина, Tereshchenkivs’ka Str., 3, Kyiv, 01004

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).