Linear-Fractional Invariance of the Simplex-Module Algorithm for Expanding Algebraic Numbers in Multidimensional Continued Fractions
- Авторы: Zhuravlev V.G.1
-
Учреждения:
- Vladimir State University
- Выпуск: Том 234, № 5 (2018)
- Страницы: 640-658
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/241968
- DOI: https://doi.org/10.1007/s10958-018-4034-3
- ID: 241968
Цитировать
Аннотация
The paper establishes the invariance of the simplex-module algorithm for expanding real numbers α = (α1, …, αd) in multidimensional continued fractions under linear-fractional transformations \( {\alpha}^{\prime }=\left({\alpha}_1^{\prime },\dots, {\alpha}_d^1\right)=U\left\langle \alpha \right\rangle \) with matrices U from the unimodular group GLd+1(ℤ). It is shown that the convergents of the transformed collections of numbers α′ satisfy the same recurrence relation and have the same approximation order.
Об авторах
V. Zhuravlev
Vladimir State University
Автор, ответственный за переписку.
Email: vzhuravlev@mail.ru
Россия, Vladimir
Дополнительные файлы
