Quantum Mappings and Characterization of Entangled Quantum States


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We review quantum mappings used in problems of characterization of entanglement of two-part and multi-particle systems. Together with positive and n-tensorial constant positive mappings, we consider physical dynamical processes that lead to quantum channels that break entanglement, annihilate entanglement, dissociate entanglement of multi-particle states, and prohibit distillation of output states. We introduce a new class of absolutely disentangling channels that provide absolutely separable states at the output, and also characterize a new class of entanglement-imposing channels whose output states are entangled. We present states that are most resistant to loss of entanglement and prove that they may differ from maximally entangled states.

About the authors

S. N. Filippov

Moscow Institute of Physics and Technology (State University)

Author for correspondence.
Email: sergey.filippov@phystech.edu
Russian Federation, Moscow


Copyright (c) 2019 Springer Science+Business Media, LLC, part of Springer Nature

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies