To the theory of mappings of the Sobolev class with the critical index


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

It is established that any homeomorphism f of the Sobolev class \( {W}_{\mathrm{loc}}^{1,1} \) with outer dilatation \( {K}_O\left(x,f\right)\in {L}_{\mathrm{loc}}^{n-1} \) is the so-called lower Q-homeomorphism with Q(x) = KO(x, f) and also a ring Q-homeomorphism with \( Q(x)={K}_O^{n-1}\left(x,f\right) \). This allows us to apply the theory of boundary behavior of ring and lower Q-homeomorphisms. In particular, we have found the conditions imposed on the outer dilatation KO(x, f) and the boundaries of domains under which any homeomorphism of the Sobolev class \( {W}_{\mathrm{loc}}^{1,1} \) admits continuous or homeomorphic extensions to the boundary.

Авторлар туралы

Elena Afanas’eva

Institute of Applied Mathematics and Mechanics of the NAS of Ukraine

Хат алмасуға жауапты Автор.
Email: es.afanasjeva@gmail.com
Украина, Slavyansk

Vladimir Ryazanov

Institute of Applied Mathematics and Mechanics of the NAS of Ukraine

Email: es.afanasjeva@gmail.com
Украина, Slavyansk

Ruslan Salimov

Institute of Mathematics of the NAS of Ukraine

Email: es.afanasjeva@gmail.com
Украина, Kiev

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019