Spectral Set of a Linear System with Discrete Time


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Fix a certain class of perturbations of the coefficient matrix A(·) of a discrete linear homogeneous system of the form

\( x\left(m+1\right)=A(m)x(m),\kern1em m\in \kern0.5em \mathrm{N},\kern1em x\in {\mathrm{R}}^n, \)

where the matrix A(·) is completely bounded on ℕ. The spectral set of this system corresponding to a given class of perturbations is the collection of complete spectra of the Lyapunov exponents of perturbed systems when perturbations runs over the whole class considered. In this paper, we examine the class R of multiplicative perturbations of the form

\( y\left(m+1\right)=A(m)R(m)x(m),\kern1em m\in \mathrm{N},\kern1em y\in {\mathrm{R}}^n, \)

where the matrix R(·) is completely bounded on ℕ. We obtain conditions that guarantee the coincidence of the spectral set λ(R) corresponding to the class R with the set of all nondecreasing n-tuples of n numbers.

作者简介

S. Popova

Udmurt State University; Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ps@uni.udm.ru
俄罗斯联邦, Izhevsk; Yekaterinburg

I. Banshchikova

Udmurt State University; Izhevsk State Agricultural Academy

Email: ps@uni.udm.ru
俄罗斯联邦, Izhevsk; Izhevsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018