Influence of the Synthesis Conditions and the Presence of Guest Molecules on the Structures of Coordination Polymers [Fe2MO(Piv)6(L)x]n (L = 4,4′-Bipyridine, Bis(4-Pyridyl)ethane) with the Labile Crystal Lattice
- 作者: Polunin R.A.1, Kiskin M.A.2, Gavrilenko K.S.3,4, Imshennik V.K.5, Maksimov Y.V.5, Eremenko I.L.2, Kolotilov S.V.1
-
隶属关系:
- Pisarzhevskii Institute of Physical Chemistry
- Kurnakov Institute of General and Inorganic Chemistry
- Scientific Educational Chemical Biological Center
- OOO Enamine
- Semenov Institute of Chemical Physics
- 期: 卷 43, 编号 10 (2017)
- 页面: 619-629
- 栏目: Article
- URL: https://journals.rcsi.science/1070-3284/article/view/213535
- DOI: https://doi.org/10.1134/S1070328417100086
- ID: 213535
如何引用文章
详细
Coordination polymers [Fe2MO(Piv)6(L1)x]n · nSolv (L1 = 1,2-bis(4-pyridyl)ethane, M = Ni (I), Co (II), x = 1.5; M = Cо (III), x = 2) are synthesized. Depending on the synthesis conditions, compounds II (cross diffusion of reactants) or III (fast mixing of reactant solutions) of different compositions are formed. It is shown by X-ray diffraction analysis (CIF files CCDC 1550804 (I) and 1550805 (III)) that compound I is a porous coordination polymer built of parallel 2D layers and compound III is a 1D coordination polymer. The crystals of complexes I and II are isostructural. The mutual arrangement of the 2D layers in compound II depends on the solvent in which this coordination polymer is formed. The desolvation of polymers I and II leads to the collapse of the crystal lattice. Unlike the complexes with L1, [Fe2NiO(Piv)6(L2)1.5]n · nSolv (IV · nSolv) is formed in the case of 4,4'-bipyridine (L2), regardless of the solvent nature, and its crystal lattice is formed by interpenetrating 2D layers. The mutual arrangement of the 2D layers in the crystal lattice of compound IV varies with the solvent used for the synthesis of this coordination polymer or for the resolvation of a sample of polymer IV. It is found that the parameters of the 57Fe Mössbauer spectra for compounds IV and IV · nDEF (DEF is N,N-diethylformamide) differ, which can be explained by a decrease in the symmetry of the coordination environment of the Fe3+ ions when the pores are filled with DEF molecules.
作者简介
R. Polunin
Pisarzhevskii Institute of Physical Chemistry
Email: mkiskin@igic.ras.ru
乌克兰, Kiev
M. Kiskin
Kurnakov Institute of General and Inorganic Chemistry
编辑信件的主要联系方式.
Email: mkiskin@igic.ras.ru
俄罗斯联邦, Moscow, 119991
K. Gavrilenko
Scientific Educational Chemical Biological Center; OOO Enamine
Email: mkiskin@igic.ras.ru
乌克兰, Kiev; Kiev
V. Imshennik
Semenov Institute of Chemical Physics
Email: mkiskin@igic.ras.ru
俄罗斯联邦, Moscow, 119991
Yu. Maksimov
Semenov Institute of Chemical Physics
Email: mkiskin@igic.ras.ru
俄罗斯联邦, Moscow, 119991
I. Eremenko
Kurnakov Institute of General and Inorganic Chemistry
Email: mkiskin@igic.ras.ru
俄罗斯联邦, Moscow, 119991
S. Kolotilov
Pisarzhevskii Institute of Physical Chemistry
Email: mkiskin@igic.ras.ru
乌克兰, Kiev
补充文件
