Some Problems in Simulation of the Thermodynamic Properties of Droplets


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this paper, the Gibbs dividing surface method is used to derive a formula to determine curvature-dependent surface tension in a system with two phases. The well-known Tolman formula is a special case of this formula. The problem of a sessile droplet is considered. The Bashforth–Adams equation analogue (in view of curvature-dependent surface tension) is obtained, and the numerical solution of the equation is carried out. It is shown that if the droplet size is not very large relative to the thickness of the surface layer (micro- or nanodroplets), the dependence of the surface tension on the curvature is very important. In addition, the case is considered where the diameters of cylindrical nanodroplets are shorter than the Tolman length.

Авторлар туралы

S. Baranov

Institute of Applied Physics, Academy of Sciences of Moldova; Shevchenko State University of Pridnestrov’e

Хат алмасуға жауапты Автор.
Email: baranov@phys.asm.md
Молдавия, Chisinau, 2028; Tiraspol, Pridnestrov’e, 3300

S. Rekhviashvili

Institute of Applied Mathematics and Automation

Хат алмасуға жауапты Автор.
Email: rsergo@mail.ru
Ресей, Nalchik, 360000

A. Sokurov

Institute of Applied Mathematics and Automation

Email: rsergo@mail.ru
Ресей, Nalchik, 360000

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2019