Search for the “stability island” of superheavy nuclei using natural track detectors
- Autores: Alekseev V.A.1, Bagulya A.V.2, Volkov A.E.2, Gippius A.A.2, Goncharova L.A.2, Gorbunov S.A.2, Kalinina G.V.1, Konovalova N.S.2, Okat’eva N.M.2, Pavlova T.A.1, Polukhina N.G.2,3, Starkov N.I.2, Soe T.N.2, Chernyavsky M.M.2, Shchedrina T.V.2
-
Afiliações:
- Vernadsky Institute of Geochemistry and Analytical Chemistry
- Lebedev Physical Institute
- National University of Science and Technology “MISIS”
- Edição: Volume 44, Nº 11 (2017)
- Páginas: 336-339
- Seção: Article
- URL: https://journals.rcsi.science/1068-3356/article/view/228495
- DOI: https://doi.org/10.3103/S1068335617110069
- ID: 228495
Citar
Resumo
The method of using natural track detectors, i.e., meteorite olivine crystals, is developed and improved applied to the problem of searching for superheavy nuclei in nature, in galactic cosmic rays (GCR). The new technique implements the sequence of etching, grinding, and track identification operations using the automated PAVICOM facility. The data on the track length and etching rate in combination with the results of calibration on heavy nucleus accelerators allowed the development of a technique for determining the GCR nucleus charge with an accuracy of ±2. On this basis, a significant set of experimental data on superheavy nuclei of natural origin was obtained (21743GCRheavy nucleiwithZ >20, including three nucleiwith a charge of 119−6+10). The minimum lifetime Tmin of the last-mentioned is within 50 years< Tmin < 100 years, which exceeds the lifetime of transfermium nuclei synthesized on accelerators by many orders of magnitude. The long-lived superheavy nuclei detected in the GCR spectrum can belong to the “stability island”.
Sobre autores
V. Alekseev
Vernadsky Institute of Geochemistry and Analytical Chemistry
Email: poluhina@sci.lebedev.ru
Rússia, ul. Kosygina 19, Moscow, 119991
A. Bagulya
Lebedev Physical Institute
Email: poluhina@sci.lebedev.ru
Rússia, Leninskii pr. 53, Moscow, 119991
A. Volkov
Lebedev Physical Institute
Email: poluhina@sci.lebedev.ru
Rússia, Leninskii pr. 53, Moscow, 119991
A. Gippius
Lebedev Physical Institute
Email: poluhina@sci.lebedev.ru
Rússia, Leninskii pr. 53, Moscow, 119991
L. Goncharova
Lebedev Physical Institute
Email: poluhina@sci.lebedev.ru
Rússia, Leninskii pr. 53, Moscow, 119991
S. Gorbunov
Lebedev Physical Institute
Email: poluhina@sci.lebedev.ru
Rússia, Leninskii pr. 53, Moscow, 119991
G. Kalinina
Vernadsky Institute of Geochemistry and Analytical Chemistry
Email: poluhina@sci.lebedev.ru
Rússia, ul. Kosygina 19, Moscow, 119991
N. Konovalova
Lebedev Physical Institute
Email: poluhina@sci.lebedev.ru
Rússia, Leninskii pr. 53, Moscow, 119991
N. Okat’eva
Lebedev Physical Institute
Email: poluhina@sci.lebedev.ru
Rússia, Leninskii pr. 53, Moscow, 119991
T. Pavlova
Vernadsky Institute of Geochemistry and Analytical Chemistry
Email: poluhina@sci.lebedev.ru
Rússia, ul. Kosygina 19, Moscow, 119991
N. Polukhina
Lebedev Physical Institute; National University of Science and Technology “MISIS”
Autor responsável pela correspondência
Email: poluhina@sci.lebedev.ru
Rússia, Leninskii pr. 53, Moscow, 119991; Leninskii pr. 4, Moscow, 119049
N. Starkov
Lebedev Physical Institute
Email: poluhina@sci.lebedev.ru
Rússia, Leninskii pr. 53, Moscow, 119991
Tang Soe
Lebedev Physical Institute
Email: poluhina@sci.lebedev.ru
Rússia, Leninskii pr. 53, Moscow, 119991
M. Chernyavsky
Lebedev Physical Institute
Email: poluhina@sci.lebedev.ru
Rússia, Leninskii pr. 53, Moscow, 119991
T. Shchedrina
Lebedev Physical Institute
Email: poluhina@sci.lebedev.ru
Rússia, Leninskii pr. 53, Moscow, 119991
Arquivos suplementares
