Development and Industrial Tests of the TiB2-Based Composite Material for Local Fractures Repairing of Electrolyzer Bottom Blocks


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The composition and fabrication technology of a repair mixture consisting of unmolded corundum with a TiB2–C composite coating wettable with aluminum for repairing local fractures of bottom blocks without interrupting electrolysis have been developed. The proposed technical solution makes it possible to decrease the bottom wear and prolong the service life of an aluminum electrolyzer by six months. To fabricate a repair mixture with an optimal composition, the titanium diboride powder with a refractory powderlike binder in ratio 50 : 50 (wt %) is used. Unmolded corundum is coated with this mixture of a binder and titanium diboride. This material is dried at 150°C and thermally treated in a carbon bed at t = 700–900°C. Calcination in a reducing gas atmosphere results in the formation of the TiB2–C composite material with a carbon content of 15–20 wt % on the unmolded corundum surface. The qualitative evaluation of the properties of the developed composite coating shows that it has rather high hardness, wear resistance, and adhesion to the base after calcination. To perform pilot tests, the repair mixture is poured with molten aluminum, which gives the platelike repair mass of the Al–TiB2–C composition. Pilot tests of the repair mass using an RA-400 operating electrolyzer at the pilot shop of OAO RUSAL-Sayanogorsk show that the bottom wear decreases within three months after the repair of the local fracture with uninterrupted electrolysis. This fact is evidenced by a 13% decrease in an average fracture depth with a stable current force of 4.7–4.8 kA/bloom after the repair. Thus, the local use of the repair mass retards the overall wear of the cathodic surface and makes it possible to prolong the service life of the electrolyzer.

作者简介

G. Nagibin

Siberian Federal University

编辑信件的主要联系方式.
Email: Nagibin1@gmail.com
俄罗斯联邦, Krasnoyarsk, 660041

A. Zavadyak

OOO RUSAL Engineering-and-Technological Centre

编辑信件的主要联系方式.
Email: Andrey.Zavadyak@rusal.com
俄罗斯联邦, Krasnoyarsk, 660067

I. Puzanov

OOO RUSAL Engineering-and-Technological Centre

编辑信件的主要联系方式.
Email: Iliya.Puzanov@rusal.com
俄罗斯联邦, Krasnoyarsk, 660067

A. Proshkin

OOO RUSAL Engineering-and-Technological Centre

编辑信件的主要联系方式.
Email: Aleksandr.Proshkin@rusal.com
俄罗斯联邦, Krasnoyarsk, 660067

E. Fedorova

Siberian Federal University; Institute of Computational Technologies SB RAS, Krasnoyarsk Branch Office

编辑信件的主要联系方式.
Email: Efedorova@sfu-kras.ru
俄罗斯联邦, Krasnoyarsk, 660041; Krasnoyarsk, 660049

S. Dobrosmyslov

Siberian Federal University; Institute of Computational Technologies SB RAS, Krasnoyarsk Branch Office

编辑信件的主要联系方式.
Email: Dobrosmislov.s.s@gmail.com
俄罗斯联邦, Krasnoyarsk, 660041; Krasnoyarsk, 660049

I. Kirillova

Siberian Federal University

编辑信件的主要联系方式.
Email: Iakirillova17@gmail.com
俄罗斯联邦, Krasnoyarsk, 660041

N. Sukhodoeva

Federal Research Centre Krasnoyarsk Scientific Centre, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: Suhodoevanadezda@gmail.com
俄罗斯联邦, Krasnoyarsk, 660036

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2019