Improving the Estimation Accuracy of Copper Oxide Leaching in an Ammonia–Ammonium System Using RSM and GA-BPNN


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In this study, a response surface methodology (RSM) model was used to analyze and optimize the factors affecting copper leaching efficiency in a copper oxide ammonia-ammonium (AA) system based on the parameters of AA concentration (ammonium hydroxide and ammonium bicarbonate matched with 1: 1), leaching time, grinding fineness, liquid-solid ratio, and temperature. The RSM analysis showed that five individual variables had a significant influence and that the interaction between AA concentration and leaching time had the most significant influence on leaching efficiency. In order to improve the estimation accuracy of the copper leaching efficiency, a model consisting of a genetic algorithm and a back propagation neural network (GA-BPNN) was used to optimize the operation index. A back propagation feed forward neural network with 3 layers (5–10–1) was applied to predict copper leaching efficiency. The genetic algorithm was applied to analyze the optimal leaching conditions. The results revealed that the GA-BPNN model outperformed the RSM model for predicting and optimizing copper oxide AA leaching. The optimization results of the GA-BPNN resulted in an R2 of 0.99827 and the highest predicted copper leaching efficiency of 79.49% was obtained under the conditions of an AA concentration of 4.78 mol/L, a leaching time of 157 min, a grinding fineness of 86.86% (–74 μm content account), a liquid-solid ratio of 2.87: 1, and a temperature of 313.17 K. A prediction and optimization method combining RSM and GA-BPNN, as used in this paper, can be further employed as a reliable and accurate method for ore leaching.

Об авторах

Minjie Zhao

Faculty of Resource Engineering of Kunming University of Science and Technology; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization

Email: fjjkmust@outlook.com
Китай, Kunming, 650093; Kunming, 650093

Jianjun Fang

Faculty of Resource Engineering of Kunming University of Science and Technology; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization

Автор, ответственный за переписку.
Email: fjjkmust@outlook.com
Китай, Kunming, 650093; Kunming, 650093

Lin Zhang

Faculty of Resource Engineering of Kunming University of Science and Technology; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization

Email: fjjkmust@outlook.com
Китай, Kunming, 650093; Kunming, 650093

Zong Dai

State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization

Email: fjjkmust@outlook.com
Китай, Kunming, 650093

Zhangwei Yao

Faculty of Resource Engineering of Kunming University of Science and Technology; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization

Email: fjjkmust@outlook.com
Китай, Kunming, 650093; Kunming, 650093

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2017

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».