On the Lie Symmetry Algebras of the Stationary Schrödinger and Pauli Equations


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

A general method for constructing first-order symmetry operators for the stationary Schrödinger and Pauli equations is proposed. It is proven that the Lie algebra of these symmetry operators is a one-dimensional extension of some subalgebra of an e(3) algebra. We also assemble a classification of stationary electromagnetic fields for which the Schrödinger (or Pauli) equation admits a Lie algebra of first-order symmetry operators.

Об авторах

M. Boldyreva

Omsk State University named after F. M. Dostoevsky

Автор, ответственный за переписку.
Email: b_oldyrev_a@mail.ru
Россия, Omsk

A. Magazev

Omsk State Technical University

Email: b_oldyrev_a@mail.ru
Россия, Omsk

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).