Surface Alloying of SUS 321 Chromium-Nickel Steel by an Electron-Plasma Process


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The mechanisms of forming nanostructured, nanophase layers are revealed and analyzed in austenitic steel subjected to surface alloying using an electron-plasma process. Nanostructured, nanophase layers up to 30 μm in thickness were formed by melting of the film/substrate system with an electron beam generated by a SOLO facility (Institute of High Current Electronics, SB RAS), Tomsk), which ensured crystallization and subsequent quenching at the cooling rates within the range 105–108 K/s. The surface was modified with structural stainless steel specimens (SUS 321 steel). The film/substrate system (film thickness 0.5 μm) was formed by a plasma-assisted vacuum-arc process by evaporating a cathode made from a sintered pseudoalloy of the following composition: Zr – 6 at.% Ti – 6 at.% Cu. The film deposition was performed in a QUINTA facility equipped with a PINK hot-cathode plasma source and DI-100 arc evaporators with accelerated cooling of the process cathode, which allowed reducing the size and fraction of the droplet phase in the deposited film. It is found that melting of the film/substrate system (Zr–Ti–Cu)/(SUS 321 steel) using a high-intensity pulsed electron beam followed by the high-rate crystallization is accompanied by the formation of α-iron cellular crystallization structure and precipitation of Cr2Zr, Cr3С2 and TiC particles on the cell boundaries, which as a whole allowed increasing microhardness by a factor of 1.3, Young’s modulus – by a factor of 1.2, wear resistance – by a factor of 2.7, while achieving a three-fold reduction in the friction coefficient.

Об авторах

Yu. Ivanov

Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences; National Research Tomsk State University; National Research Tomsk Polytechnic University

Автор, ответственный за переписку.
Email: yufi55@mail.ru
Россия, Tomsk; Tomsk; Tomsk

A. Teresov

Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences; National Research Tomsk State University

Email: yufi55@mail.ru
Россия, Tomsk; Tomsk

E. Petrikova

Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences; National Research Tomsk State University

Email: yufi55@mail.ru
Россия, Tomsk; Tomsk

O. Krysina

Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences; National Research Tomsk State University

Email: yufi55@mail.ru
Россия, Tomsk; Tomsk

O. Ivanova

Tomsk State Architecture and Building University

Email: yufi55@mail.ru
Россия, Tomsk

V. Shugurov

Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences; National Research Tomsk Polytechnic University

Email: yufi55@mail.ru
Россия, Tomsk; Tomsk

P. Moskvin

Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences

Email: yufi55@mail.ru
Россия, Tomsk

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).