NP-Hardness of Quadratic Euclidean 1-Mean and 1-Median 2-Clustering Problem with Constraints on the Cluster Sizes
- 作者: Kel’manov A.V.1,2, Pyatkin A.V.1,2, Khandeev V.I.1,2
-
隶属关系:
- Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University
- 期: 卷 100, 编号 3 (2019)
- 页面: 545-548
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225741
- DOI: https://doi.org/10.1134/S1064562419060127
- ID: 225741
如何引用文章
详细
We consider the problem of clustering a finite set of N points in d-dimensional Euclidean space into two clusters minimizing the sum (over both clusters) of the intracluster sums of the squared distances between the cluster elements and their centers. The center of one cluster is defined as a centroid (geometric center). The center of the other cluster is determined as an optimized point in the input set. We analyze the variant of the problem with given cluster sizes such that their sum is equal to the size of the input set. The strong NP-hardness of this problem is proved.
作者简介
A. Kel’manov
Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
编辑信件的主要联系方式.
Email: kelm@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090
A. Pyatkin
Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
编辑信件的主要联系方式.
Email: artem@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090
V. Khandeev
Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
编辑信件的主要联系方式.
Email: khandeev@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090
补充文件
