Explicit Methods for Integrating Stiff Cauchy Problems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An explicit method for solving stiff Cauchy problems is proposed. The method relies on explicit schemes and a step size selection algorithm based on the curvature of an integral curve. Closed-form formulas are derived for finding the curvature. For Runge–Kutta schemes with up to four stages, the corresponding sets of coefficients are given. The method is validated on a test problem with a given exact solution. It is shown that the method is as accurate and robust as implicit methods, but is substantially superior to them in efficiency. A numerical example involving chemical kinetics computations with 9 components and 50 reactions is given.

作者简介

A. Belov

Faculty of Physics, Lomonosov Moscow State University; RUDN University

编辑信件的主要联系方式.
Email: aa.belov@physics.msu.ru
俄罗斯联邦, Moscow, 119992; Moscow, 117198

N. Kalitkin

Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kalitkin@imamod.ru
俄罗斯联邦, Moscow, 125047

P. Bulatov

Faculty of Physics, Lomonosov Moscow State University

Email: kalitkin@imamod.ru
俄罗斯联邦, Moscow, 119992

E. Zholkovskii

Faculty of Physics, Lomonosov Moscow State University

Email: kalitkin@imamod.ru
俄罗斯联邦, Moscow, 119992

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019