Green’s Function of Ordinary Differential Operators and an Integral Representation of Sums of Certain Power Series
- 作者: Mirzoev K.A.1, Safonova T.A.2
-
隶属关系:
- Moscow State University
- Lomonosov Northern Arctic Federal University
- 期: 卷 98, 编号 2 (2018)
- 页面: 486-489
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225563
- DOI: https://doi.org/10.1134/S1064562418060236
- ID: 225563
如何引用文章
详细
The eigenvalues and eigenfunctions of certain operators generated by symmetric differential expressions with constant coefficients and self-adjoint boundary conditions in the space of Lebesgue squareintegrable functions on an interval are explicitly calculated, while the resolvents of these operators are integral operators with kernels for which the theorem on an eigenfunction expansion holds. In addition, each of these kernels is the Green’s function of a self-adjoint boundary value problem, and the procedure for its construction is well known. Thus, the Green’s functions of these problems can be expanded in series in terms of eigenfunctions. In this study, identities obtained by this method are used to calculate the sums of convergent number series and to represent the sums of certain power series in an intergral form.
作者简介
K. Mirzoev
Moscow State University
编辑信件的主要联系方式.
Email: mirzoev.karahan@mail.ru
俄罗斯联邦, Moscow, 199991
T. Safonova
Lomonosov Northern Arctic Federal University
Email: mirzoev.karahan@mail.ru
俄罗斯联邦, Arkhangelsk, 163002
补充文件
