Frequency Tests for the Existence and Stability of Bounded Solutions to Differential Equations of Higher Order
- 作者: Perov A.I.1, Kostrub I.D.1
-
隶属关系:
- Voronezh State University
- 期: 卷 98, 编号 2 (2018)
- 页面: 425-429
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225550
- DOI: https://doi.org/10.1134/S106456241806008X
- ID: 225550
如何引用文章
详细
To study a vector-matrix differential equation of order n, the method of integral equations is used. When the Lipschitz condition holds, an existence and uniqueness theorem for a bounded solution and its estimates are obtained. This solution is almost periodic if the nonlinearity is almost periodic, and it is asymptotically Lyapunov stable if the matrix characteristic polynomial is a Hurwitz polynomial. Under a Lipschitztype condition, a theorem on the existence of at least one bounded solution is proved; among the bounded solutions, there is at least one recurrent solution if the nonlinearity is almost periodic. The equation is S-dissipative if the matrix characteristic polynomial is a Hurwitz polynomial.
作者简介
A. Perov
Voronezh State University
编辑信件的主要联系方式.
Email: anperov@mail.ru
俄罗斯联邦, Voronezh, 394018
I. Kostrub
Voronezh State University
Email: anperov@mail.ru
俄罗斯联邦, Voronezh, 394018
补充文件
