Hamiltonian Formalism for the Problem of Optimal Motion Control under Multiple Criteria


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper describes methods for optimizing solutions to problems of controlled dynamics under multiple criteria. Such problems are usually solved by reduction to scalarized costs. However, preferable in realistic cases is the analysis of the whole Pareto front with description of its evolutionary dynamics. This is done via the introduction of vector-valued multiobjective dynamic programming similar to the classical approach described in [1]. It is shown that, under certain conditions, a multiobjective analogue of the classical principle of optimality holds for the introduced vector-valued cost function. As a result, a vector-valued version of the Hamilton–Jacobi–Bellman equation is introduced and the dynamics of the whole Pareto front is presented.

作者简介

Yu. Komarov

Faculty of Computational Mathematics and Cybernetics

编辑信件的主要联系方式.
Email: ykomarov94@gmail.com
俄罗斯联邦, Moscow

A. Kurzhanski

Faculty of Computational Mathematics and Cybernetics

Email: ykomarov94@gmail.com
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018