Logical laws for existential monadic second-order sentences with infinite first-order parts


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider existential monadic second-order sentences ∃X φ(X) about undirected graphs, where ∃X is a finite sequence of monadic quantifiers and φ(X) ∈ +∞ωω is an infinite first-order formula. We prove that there exists a sentence (in the considered logic) with two monadic variables and two first-order variables such that the probability that it is true on G(n, p) does not converge. Moreover, such an example is also obtained for one monadic variable and three first-order variables.

作者简介

M. Zhukovskii

Moscow Institute of Physics and Technology (State University); RUDN University

编辑信件的主要联系方式.
Email: zhukmax@gmail.com
俄罗斯联邦, Dolgoprudnyi, Moscow oblast, 141700; Moscow, 117198

M. Sánchez

Moscow Institute of Physics and Technology (State University)

Email: zhukmax@gmail.com
俄罗斯联邦, Dolgoprudnyi, Moscow oblast, 141700

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017