Coincidence points of multivalued mappings in (q1, q2)-quasimetric spaces


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The properties of (q1, q2)-quasimetric spaces are examined. Multivalued covering mappings between (q1, q2)-quasimetric spaces are investigated. Given two multivalued mappings between (q1, q2)-quasimetric spaces such that one of them is covering and the other satisfies the Lipschitz condition, sufficient conditions for these mappings to have a coincidence point are obtained. A theorem on the stability of coincidence points with respect to small perturbations in the considered mappings is proved.

作者简介

A. Arutyunov

RUDN University; Faculty of Computational Mathematics and Cybernetics

编辑信件的主要联系方式.
Email: arutun@orc.ru
俄罗斯联邦, Moscow, 117198; Moscow, 119992

A. Greshnov

Novosibirsk State University; Sobolev Institute of Mathematics, Siberian Branch

Email: arutun@orc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017