On the accuracy of a posteriori functional error majorants for approximate solutions of elliptic equations
- 作者: Korneev V.G.1
-
隶属关系:
- St. Petersburg State University
- 期: 卷 96, 编号 1 (2017)
- 页面: 380-383
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225296
- DOI: https://doi.org/10.1134/S1064562417040287
- ID: 225296
如何引用文章
详细
A new a posteriori functional majorant is obtained for the error of approximate solutions to an elliptic equation of order 2n, n ≥ 1, with an arbitrary nonnegative constant coefficient σ ≥ 0 in the lowest order term σu, where u is the solution of the equation. The majorant is much more accurate than Aubin’s majorant, which makes no sense at σ ≡ 0 and coarsens the error estimate for σ from a significant neighborhood of zero. The new majorant also surpasses other majorants having been obtained for the case σ ≡ 0 over recent decades. For solutions produced by the finite element method on quasi-uniform grids, it is shown that the new a posteriori majorant is sharp in order of accuracy, which coincides with that of sharp a priori error estimates.
作者简介
V. Korneev
St. Petersburg State University
编辑信件的主要联系方式.
Email: vad.korneev2011@yandex.ru
俄罗斯联邦, St. Petersburg
补充文件
