On the periodicity of continued fractions in elliptic fields


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Article [1] raised the question of the finiteness of the number of square-free polynomials f ∈ ℚ[h] of fixed degree for which \(\sqrt f \) has periodic continued fraction expansion in the field ℚ((h)) and the fields ℚ(h)(\(\sqrt f \)) are not isomorphic to one another and to fields of the form ℚ(h)\(\left( {\sqrt {c{h^n} + 1} } \right)\), where c ∈ ℚ* and n ∈ ℕ. In this paper, we give a positive answer to this question for an elliptic field ℚ(h)(\(\sqrt f \)) in the case deg f = 3.

作者简介

V. Platonov

Scientific Research Institute for System Analysis

编辑信件的主要联系方式.
Email: platonov@niisi.ras.ru
俄罗斯联邦, Moscow, 117218

G. Fedorov

Scientific Research Institute for System Analysis

Email: platonov@niisi.ras.ru
俄罗斯联邦, Moscow, 117218

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017