Spectra of short monadic sentences about sparse random graphs
- 作者: Zhukovskii M.E.1,2, Kupavskii A.B.1,3
-
隶属关系:
- Moscow Institute of Physics and Technology (State University)
- RUDN University
- University Grenoble-Alpes
- 期: 卷 95, 编号 1 (2017)
- 页面: 60-61
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/224763
- DOI: https://doi.org/10.1134/S1064562417010227
- ID: 224763
如何引用文章
详细
A random graph G(n, p) is said to obey the (monadic) zero–one k-law if, for any monadic formula of quantifier depth k, the probability that it is true for the random graph tends to either zero or one. In this paper, following J. Spencer and S. Shelah, we consider the case p = n−α. It is proved that the least k for which there are infinitely many α such that a random graph does not obey the zero–one k-law is equal to 4.
作者简介
M. Zhukovskii
Moscow Institute of Physics and Technology (State University); RUDN University
编辑信件的主要联系方式.
Email: zhukmax@gmail.com
俄罗斯联邦, Dolgoprudnyi, Moscow oblast, 141700; Moscow, 117198
A. Kupavskii
Moscow Institute of Physics and Technology (State University); University Grenoble-Alpes
Email: zhukmax@gmail.com
俄罗斯联邦, Dolgoprudnyi, Moscow oblast, 141700; Grenoble
补充文件
