On the complexity of some Euclidean optimal summing problems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The complexity status of several discrete optimization problems concerning the search for a subset of a finite set of Euclidean points (vectors) is analyzed. In the considered problems, the aim is to minimize objective functions depending either only on the norm of the sum of the elements from the subset or on this norm and the cardinality of the subset. It is proved that, if the dimension of the space is part of the input, then all analyzed problems are strongly NP-hard and, if the space dimension is fixed, then these problems are NP-hard even for dimension 2 (on a plane). It is shown that, if the coordinates of the input points are integer, then all the problems can be solved in pseudopolynomial time in the case of a fixed space dimension.

作者简介

A. Eremeev

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch; Omsk State University

编辑信件的主要联系方式.
Email: eremeev@ofim.oscsbras.ru
俄罗斯联邦, ul. Pevtsova 13, Omsk, 644099; pr. Mira 55a, Omsk, 630077

A. Kel’manov

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Email: eremeev@ofim.oscsbras.ru
俄罗斯联邦, pr. Akademika Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

A. Pyatkin

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Email: eremeev@ofim.oscsbras.ru
俄罗斯联邦, pr. Akademika Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016