Constructive Generalization of Classical Sufficient Second-Order Optimality Conditions


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

New sufficient second-order optimality conditions for equality constrained optimization problems are proposed, which significantly strengthen and complement classical ones and are constructive. For example, they establish the equivalence between sufficient conditions for inequality constrained optimization problems and sufficient conditions for optimality in equality constrained problems by reducing the former to equalities via introducing slack variables. Previously, in the case of classical sufficient optimality conditions, this fact was not considered to be true, that is, the existing classical sufficient conditions were not complete. Accordingly, the proposed optimality conditions complement the classical ones and solve the issue of equivalence between inequality and equality constrained problems when the former is reduced to the latter by introducing slack variables.

Об авторах

Yu. Evtushenko

Dorodnitsyn Computing Center, Federal Research Center “Computer Science and Control” of the Russian Academy
of Sciences; Moscow Institute of Physics and Technology (State University); Moscow Aviation Institute (National Research University)

Автор, ответственный за переписку.
Email: yuri-evtushenko@yandex.ru
Россия, Moscow, 119333; Dolgoprudnyi, Moscow oblast, 141700; Moscow, 125080

A. Tret’yakov

Dorodnitsyn Computing Center, Federal Research Center “Computer Science and Control” of the Russian Academy
of Sciences; System Research Institute, Polish Academy of Sciences; Siedlce University

Автор, ответственный за переписку.
Email: tret@ap.siedlce.pl
Россия, Moscow, 119333; Warsaw, 01-447; Siedlce, 08-110

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).