Operator Cosine Functions and Boundary Value Problems
- 作者: Kostin V.A.1, Kostin D.V.1, Kostin A.V.1
-
隶属关系:
- Voronezh State University
- 期: 卷 99, 编号 3 (2019)
- 页面: 303-307
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225682
- DOI: https://doi.org/10.1134/S1064562419030177
- ID: 225682
如何引用文章
详细
For the first time, the theory of strongly continuous cosine operator functions (COF) has been applied to study the correct solvability of boundary value problems for second-order linear differential equations in a Banach space (elliptic case). The correct solvability of the Cauchy problem (hyperbolic case) is usually formulated in COF terms. The conditions on the order of COF growth are specified under which the Dirichlet boundary value problem is correct on a finite interval. An integral representation of the solution and its sharp estimate are given.
作者简介
V. Kostin
Voronezh State University
编辑信件的主要联系方式.
Email: vlkostin@mail.ru
俄罗斯联邦, Voronezh, 394693
D. Kostin
Voronezh State University
Email: vlkostin@mail.ru
俄罗斯联邦, Voronezh, 394693
A. Kostin
Voronezh State University
Email: vlkostin@mail.ru
俄罗斯联邦, Voronezh, 394693
补充文件
