Operator Cosine Functions and Boundary Value Problems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For the first time, the theory of strongly continuous cosine operator functions (COF) has been applied to study the correct solvability of boundary value problems for second-order linear differential equations in a Banach space (elliptic case). The correct solvability of the Cauchy problem (hyperbolic case) is usually formulated in COF terms. The conditions on the order of COF growth are specified under which the Dirichlet boundary value problem is correct on a finite interval. An integral representation of the solution and its sharp estimate are given.

作者简介

V. Kostin

Voronezh State University

编辑信件的主要联系方式.
Email: vlkostin@mail.ru
俄罗斯联邦, Voronezh, 394693

D. Kostin

Voronezh State University

Email: vlkostin@mail.ru
俄罗斯联邦, Voronezh, 394693

A. Kostin

Voronezh State University

Email: vlkostin@mail.ru
俄罗斯联邦, Voronezh, 394693

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019