Peano-Type Curves, Liouville Numbers, and Microscopic Sets
- Авторы: Agadzhanov A.N.1
-
Учреждения:
- Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
- Выпуск: Том 99, № 2 (2019)
- Страницы: 117-120
- Раздел: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225636
- DOI: https://doi.org/10.1134/S1064562419020017
- ID: 225636
Цитировать
Аннотация
Peano-type curves in multidimensional Euclidean space are considered in terms of number theory. In contrast to curves constructed by D. Hilbert, H. Lebesgue, V. Sierpinski, and others, this paper presents results showing that each such curve is a continuous image of universal (shared by all curves) nowhere dense perfect subsets of the interval [0, 1] with a zero s-dimensional Hausdorff measure that consist of only Liouville numbers. An example of a problem in which a pair of continuous functions controlling the behavior of an oscillating system generates a Peano-type curve in the plane is given.
Об авторах
A. Agadzhanov
Trapeznikov Institute of Control Sciences,Russian Academy of Sciences
Автор, ответственный за переписку.
Email: ashot_ran@mail.ru
Россия, Moscow, 117997
Дополнительные файлы
