Estimates for Solutions to Fokker–Planck–Kolmogorov Equations with Integrable Drifts
- Авторы: Bogachev V.I.1,2,3, Shaposhnikov A.V.1, Shaposhnikov S.V.1,2,3
-
Учреждения:
- Faculty of Mechanics and Mathematics
- National Research University Higher School of Economics
- St. Tikhon’s Orthodox University
- Выпуск: Том 98, № 3 (2018)
- Страницы: 559-563
- Раздел: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225581
- DOI: https://doi.org/10.1134/S1064562418070074
- ID: 225581
Цитировать
Аннотация
The result of this paper states that every probability measure satisfying the stationary Fokker–Planck–Kolmogorov equation obtained by a -integrable perturbation of the drift term–x of the Ornstein–Uhlenbeck operator is absolutely continuous with respect to the corresponding Gaussian measure γ and \(f = \frac{{d\mu }}{{d\gamma }}\) for the density the integral of
Об авторах
V. Bogachev
Faculty of Mechanics and Mathematics; National Research University Higher School of Economics; St. Tikhon’s Orthodox University
Автор, ответственный за переписку.
Email: vibogach@mail.ru
Россия, Moscow, 119991; Moscow, 101000; Moscow, 115184
A. Shaposhnikov
Faculty of Mechanics and Mathematics
Email: vibogach@mail.ru
Россия, Moscow, 119991
S. Shaposhnikov
Faculty of Mechanics and Mathematics; National Research University Higher School of Economics; St. Tikhon’s Orthodox University
Email: vibogach@mail.ru
Россия, Moscow, 119991; Moscow, 101000; Moscow, 115184
Дополнительные файлы
