On Pronormal Subgroups in Finite Simple Groups


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A subgroup H of a group G is called pronormal if, for any element g of G, the subgroups H and Hg are conjugate in the subgroup they generate. Some problems in the theory of permutation groups and combinatorics have been solved in terms of pronormality, and the characterization of pronormal subgroups in finite groups is a problem of importance for applications of group theory. A task of special interest is the study of pronormal subgroups in finite simple groups and direct products of such groups. In 2012 E.P. Vdovin and D.O. Revin conjectured that the subgroups of odd index in all finite simple groups are pronormal. We disproved this conjecture in 2016. Accordingly, a natural task is to classify finite simple groups in which the subgroups of odd index are pronormal. This paper completes the description of finite simple groups whose Sylow 2-subgroups contain their centralizers in the group and the subgroups of odd index in which are pronormal.

Sobre autores

A. Kondrat’ev

Krasovskii Institute of Mathematics and Mechanics, Ural Branch

Autor responsável pela correspondência
Email: a.s.kondratiev@imm.uran.ru
Rússia, Yekaterinburg, 620990

N. Maslova

Krasovskii Institute of Mathematics and Mechanics, Ural Branch

Email: a.s.kondratiev@imm.uran.ru
Rússia, Yekaterinburg, 620990

D. Revin

Sobolev Institute of Mathematics, Siberian Branch

Email: a.s.kondratiev@imm.uran.ru
Rússia, Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018