A characterization of Nikolskii–Besov classes via integration by parts
- Авторы: Bogachev V.I.1,2,3, Kosov E.D.1, Popova S.N.1
-
Учреждения:
- Department of Mechanics and Mathematics
- National Research University Higher School of Economics
- St. Tikhon’s Orthodox Humanitarian University
- Выпуск: Том 96, № 2 (2017)
- Страницы: 449-453
- Раздел: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225366
- DOI: https://doi.org/10.1134/S106456241705012X
- ID: 225366
Цитировать
Аннотация
In this note we give a characterization of Nikolskii–Besov classes of functions of fractional smoothness (see [1–3]) by means of a nonlinear integration by parts formula in the form of a certain nonlinear inequality. This characterization is motivated by the recent papers [4–6] on distributions of polynomials in Gaussian random variables, where it has been shown that the distribution densities of nonconstant polynomials in Gaussian random variables belong to Nikolskii–Besov classes. Our main result is a generalization of the classical description of the class BV of functions of bounded variation in terms of integration by parts.
Об авторах
V. Bogachev
Department of Mechanics and Mathematics; National Research University Higher School of Economics; St. Tikhon’s Orthodox Humanitarian University
Автор, ответственный за переписку.
Email: vibogach@mail.ru
Россия, Moscow; Moscow; Moscow
E. Kosov
Department of Mechanics and Mathematics
Email: vibogach@mail.ru
Россия, Moscow
S. Popova
Department of Mechanics and Mathematics
Email: vibogach@mail.ru
Россия, Moscow
Дополнительные файлы
