🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Iterative approximate factorization for difference operators of high-order bicompact schemes for multidimensional nonhomogeneous hyperbolic systems


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An iterative method for solving equations of multidimensional bicompact schemes based on an approximate factorization of their difference operators is proposed for the first time. Its algorithm is described as applied to a system of two-dimensional nonhomogeneous quasilinear hyperbolic equations. The convergence of the iterative method is proved in the case of the two-dimensional homogeneous linear advection equation. The performance of the method is demonstrated on two numerical examples. It is shown that the method preserves a high (greater than the second) order of accuracy in time and performs 3–4 times faster than Newton’s method. Moreover, the method can be efficiently parallelized.

About the authors

M. D. Bragin

Moscow Institute of Physics and Technology (State University)

Author for correspondence.
Email: michael@bragin.cc
Russian Federation, Dolgoprudnyi, Moscow oblast, 141700

B. V. Rogov

Moscow Institute of Physics and Technology (State University); Keldysh Institute of Applied Mathematics

Email: michael@bragin.cc
Russian Federation, Dolgoprudnyi, Moscow oblast, 141700; Moscow, 125047

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.