Jacobi translation and the inequality of different metrics for algebraic polynomials on an interval


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The sharp inequality of different metrics (Nikol’skii’s inequality) for algebraic polynomials in the interval [−1, 1] between the uniform norm and the norm of the space Lq(α,β), 1 ≤ q < ∞, with Jacobi weight ϕ(α,β)(x) = (1 − x)α(1 + x)β α ≥ β > −1, is investigated. The study uses the generalized translation operator generated by the Jacobi weight. A set of functions is described for which the norm of this operator in the space Lq(α,β), 1 ≤ q < ∞, \(\alpha > \beta \geqslant - \frac{1}{2}\), is attained.

作者简介

V. Arestov

Institute of Mathematics and Computer Science; Institute of Mathematics and Mechanics, Ural Branch

编辑信件的主要联系方式.
Email: vitalii.arestov@urfu.ru
俄罗斯联邦, Yekaterinburg, 620000; ul. S. Kovalevskoi 16, Yekaterinburg, 620990

M. Deikalova

Institute of Mathematics and Computer Science; Institute of Mathematics and Mechanics, Ural Branch

Email: vitalii.arestov@urfu.ru
俄罗斯联邦, Yekaterinburg, 620000; ul. S. Kovalevskoi 16, Yekaterinburg, 620990

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017