🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

On S-Units for Linear Valuations and the Periodicity of Continued Fractions of Generalized Type in Hyperelliptic Fields


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An equivalence theorem is proved for the following conditions: the periodicity of continued fractions of generalized type for key elements of hyperelliptic field \(L\), the existence of nontrivial \(S\)-units in \(L\) for sets \(S\) consisting two valuations of degree one, and the existence of a torsion of certain type in the Jacobian variety associated with hyperelliptic field \(L\). In practice, this theorem allows using continued fractions of generalized type to effectively search for fundamental \(S\)-units of hyperelliptic fields. We give an example of the hyperelliptic field of genus 3, which shows all three equivalent conditions in the indicated theorem.

Sobre autores

V. Platonov

Scientific Research Institute for System Analysis,
Russian Academy of Sciences; Steklov Mathematical Institute, Russian Academy
of Sciences

Autor responsável pela correspondência
Email: platonov@niisi.ras.ru
Rússia, Moscow, 117218; Moscow, 119991

G. Fedorov

Scientific Research Institute for System Analysis,
Russian Academy of Sciences; Faculty of Mechanics and Mathematics,
Lomonosov Moscow State University

Autor responsável pela correspondência
Email: fedorov@mech.math.msu.su
Rússia, Moscow, 117218; Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019