Reducing the Degree of Integrals of Hamiltonian Systems by Using Billiards
- Авторлар: Vedyushkina V.V.1, Fomenko A.T.1
-
Мекемелер:
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
- Шығарылым: Том 99, № 3 (2019)
- Беттер: 266-269
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225673
- DOI: https://doi.org/10.1134/S1064562419030086
- ID: 225673
Дәйексөз келтіру
Аннотация
In the theory of integrable Hamiltonian systems with two degrees of freedom, widely known are integrable systems having integrals of high degrees, namely, 3 and 4. Examples are the Kovalevskaya system and its generalizations—the Kovalevskaya–Yehia system and the Kovalevskaya system on the Lie algebra so(4) the Goryachev–Chaplygin–Sretensky, Sokolov, and Dullin–Matveev systems. It is shown that, at a number of isoenergy 3-surfaces, the third and fourth degrees of integrals of these systems can be reduced by using integrable billiards bounded by arcs of confocal quadrics. Moreover, the integrals of degree 3 and 4 are reduced to the same canonical quadratic integral on a billiard.
Авторлар туралы
V. Vedyushkina
Faculty of Mechanics and Mathematics,Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: arinir@yandex.ru
Ресей, Moscow, 119991
A. Fomenko
Faculty of Mechanics and Mathematics,Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: atfomenko@mail.ru
Ресей, Moscow, 119991
Қосымша файлдар
