Modeling Nondegenerate Bifurcations of Closures of Solutions for Integrable Systems with Two Degrees of Freedom by Integrable Topological Billiards
- Авторлар: Vedyushkina V.V.1, Fomenko A.T.1, Kharcheva I.S.1
-
Мекемелер:
- Faculty of Mechanics and Mathematics
- Шығарылым: Том 97, № 2 (2018)
- Беттер: 174-176
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225486
- DOI: https://doi.org/10.1134/S1064562418020230
- ID: 225486
Дәйексөз келтіру
Аннотация
It is well known that surgeries of closures of solutions for integrable nondegenerate Hamiltonian systems with two degrees of freedom at a level of constant energy are classified by the so-called 3-atoms. These surgeries correspond to singular leaves of the Liouville foliation of three-dimensional isoenergetic surfaces. In this paper we prove the Fomenko conjecture that all such surgeries are modeled by integrable topological two-dimensional billiards (billiard books).
Авторлар туралы
V. Vedyushkina
Faculty of Mechanics and Mathematics
Хат алмасуға жауапты Автор.
Email: arinir@yandex.ru
Ресей, Moscow, 119991
A. Fomenko
Faculty of Mechanics and Mathematics
Email: arinir@yandex.ru
Ресей, Moscow, 119991
I. Kharcheva
Faculty of Mechanics and Mathematics
Email: arinir@yandex.ru
Ресей, Moscow, 119991
Қосымша файлдар
