Estimates for the norms of monotone operators on weighted Orlicz–Lorentz classes


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A monotone operator P mapping the Orlicz–Lorentz class to an ideal space is considered. The Orlicz–Lorentz class is the cone of measurable functions on R+ =(0, ∞) whose decreasing rearrangements with respect to the Lebesgue measure on R+ belong to the weighted Orlicz space LΦ,ν. Reduction theorems are proved, which make it possible to reduce estimates of the norm of the operator P: ΛΦ,νY to those of the norm of its restriction to the cone of nonnegative step functions in LΦ,ν. The application of these results to the identity operator from ΛΦ,ν to the weighted Lebesgue space Y = L1(R+; g) gives exact descriptions of associated norms for ΛΦ,ν.

Sobre autores

M. Goldman

Peoples Friendship University

Autor responsável pela correspondência
Email: seulydia@yandex.ru
Rússia, ul. Miklukho-Maklaya 6, Moscow, 117198

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016