Neumann problem for the Lavrent’ev–Bitsadze equation with two type-change lines in a rectangular domain


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The Neumann problem for an equation with two perpendicular internal type-change lines in a rectangular domain is investigated. Uniqueness and existence theorems are proved by applying the spectral method. The separation of variables yields an eigenvalue problem for an ordinary differential equation. This problem is not self-adjoint, and the system of its eigenfunctions is not orthogonal. A corresponding biorthogonal system of functions is constructed and proved to be complete. The completeness result is used to prove a necessary and sufficient uniqueness condition for the problem under study. Its solution is constructed in the form of the sum of a biorthogonal series.

Авторлар туралы

A. Gimaltdinova

Sterlitamak Branch; Institute of Applied Studies

Хат алмасуға жауапты Автор.
Email: alfiragimaltdinova@mail.ru
Ресей, pr. Lenina 49, Sterlitamak, 453103; Odesskaya ul. 68, Sterlitamak, 453103

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016