Wave propagation in the Kolmogorov–Petrovskii–Piskunov problem with delay


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The problem of density wave propagation governed by a logistic equation with delay and diffusion (Fisher–Kolmogorov–Petrovskii–Piskunov equation with delay) was studied. To analyze the qualitative behavior of solutions to this equation with periodic boundary conditions in the case of the diffusion parameter tending to zero, the normal form of the problem, i.e., the Ginzburg–Landau equation was constructed near the unit equilibrium. A numerical analysis of wave propagation showed that, for sufficiently small delays, this equation has solutions close to those of the standard Kolmogorov–Petrovskii–Piskunov equation. As the delay parameter increases, a decaying oscillatory component appears in the spatial distribution of the solution and, then, undamped (in time) and slowly propagating (in space) oscillations close to solutions of the corresponding boundary value problem with periodic boundary conditions are observed near the initial perturbation segment.

Авторлар туралы

S. Aleshin

Yaroslavl State University; Science Center in Chernogolovka

Хат алмасуға жауапты Автор.
Email: fktiby@yandex.ru
Ресей, Yaroslavl, 150000; Chernogolovka, Moscow oblast, 142432

S. Glyzin

Yaroslavl State University; Science Center in Chernogolovka

Email: fktiby@yandex.ru
Ресей, Yaroslavl, 150000; Chernogolovka, Moscow oblast, 142432

S. Kashchenko

Yaroslavl State University; National Research Nuclear University “MEPhI”

Email: fktiby@yandex.ru
Ресей, Yaroslavl, 150000; Moscow, 115409

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017