The graph Kre(4) does not exist


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Suppose that a strongly regular graph Γ with parameters (v, k, λ, μ) has eigenvalues k, r, and s. If the graphs Γ and \(\bar \Gamma \) are connected, then the following inequalities, known as Krein’s conditions, hold: (i) (r + 1)(k + r + 2rs) ≤ (k + r)(s + 1)2 and (ii) (s + 1)(k + s + 2rs) ≤ (k + s)(r + 1)2. We say that Γ is a Krein graph if one of Krein’s conditions (i) and (ii) is an equality for this graph. A triangle-free Krein graph has parameters ((r2 + 3r)2, r3 + 3r2 + r, 0, r2 + r). We denote such a graph by Kre(r). It is known that, in the cases r = 1 and r = 2, the graphs Kre(r) exist and are unique; these are the Clebsch and Higman–Sims graphs, respectively. The latter was constructed in 1968 together with the Higman–Sims sporadic simple group. A.L. Gavrilyuk and A.A. Makhnev have proved that the graph Kre(3) does not exist. In this paper, it is proved that the graph Kre(4) (a strongly regular graph with parameters (784, 116, 0, 20)) does not exist either.

Авторлар туралы

A. Makhnev

Institute of Mathematics and Mechanics, Ural Branch; Ural Federal University

Хат алмасуға жауапты Автор.
Email: makhnev@imm.uran.ru
Ресей, Yekaterinburg, 620990; Yekaterinburg, 620000

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017