On spectral decompositions of solutions to discrete Lyapunov equations


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A new approach to solving discrete Lyapunov matrix algebraic equations is based on methods for spectral decomposition of their solutions. Assuming that all eigenvalues of the matrices on the left-hand side of the equation lie inside the unit disk, it is shown that the matrix of the solution to the equation can be calculated as a finite sum of matrix bilinear quadratic forms made up by products of Faddeev matrices obtained by decomposing the resolvents of the matrices of the Lyapunov equation. For a linear autonomous stochastic discrete dynamic system, analytical expressions are obtained for the decomposition of the asymptotic variance matrix of system’s states.

Авторлар туралы

I. Yadykin

Trapeznikov Institute of Control Sciences; Skolkovo Institute of Science and Technology

Хат алмасуға жауапты Автор.
Email: jad@ipu.ru
Ресей, Profsoyuznaya ul. 65, Moscow, 117997; ul. Novaya 100, Skolkovo, Moscow oblast, 143025

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016