Stochastic intermediate gradient method for convex optimization problems
- Авторы: Gasnikov A.V.1, Dvurechensky P.E.1
-
Учреждения:
- Institute for Information Transmission Problems
- Выпуск: Том 93, № 2 (2016)
- Страницы: 148-151
- Раздел: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/223461
- DOI: https://doi.org/10.1134/S1064562416020071
- ID: 223461
Цитировать
Аннотация
New first-order methods are introduced for solving convex optimization problems from a fairly broad class. For composite optimization problems with an inexact stochastic oracle, a stochastic intermediate gradient method is proposed that allows using an arbitrary norm in the space of variables and a prox-function. The mean rate of convergence of this method and the probability of large deviations from this rate are estimated. For problems with a strongly convex objective function, a modification of this method is proposed and its rate of convergence is estimated. The resulting estimates coincide, up to a multiplicative constant, with lower complexity bounds for the class of composite optimization problems with an inexact stochastic oracle and for all usually considered subclasses of this class.
Ключевые слова
Об авторах
A. Gasnikov
Institute for Information Transmission Problems
Автор, ответственный за переписку.
Email: gasnikov@yandex.ru
Россия, Bol’shoi Karetnyi per. 19/1, Moscow, 127994
P. Dvurechensky
Institute for Information Transmission Problems
Email: gasnikov@yandex.ru
Россия, Bol’shoi Karetnyi per. 19/1, Moscow, 127994
Дополнительные файлы
