On the problem of optimal spacecraft attitude control


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The problem of the optimal control of a spacecraft reorientation from an arbitrary initial position into a prescribed final angular position is studied. For optimization, we use a generalized integral index characterizing the complexity of the rotation trajectory from the viewpoint of the “distance covered,” which is the generalized rotation angle that takes into account the different weights of the spacecraft axes in the sense of expenditures (of fuel, time, or another irreplaceable resource) needed to rotate the spacecraft by the same angle. An analytical solution of this problem is obtained. Two versions of the optimal spacecraft slew maneuver problem (using the shortest trajectory) are considered—the quickest maneuver and a maneuver in the prescribed time. The optimal control problem is solved for several types of constraints on the control variables. The time of starting the deceleration is determined based on the actual motion parameters (mismatch angle and angular velocity) using the terminal control principles (based on the angular position and angular velocity measurements). An example and simulation results of the spacecraft dynamics under the optimal control are presented, which demonstrate the practical usefulness of the proposed control algorithms.

作者简介

M. Levskii

Maximov Research Institute of Space Systems

编辑信件的主要联系方式.
Email: Dp940@mail.ru
俄罗斯联邦, ul. Tikhonravova 27, Yubileinyi, Moscow oblast, 141091


版权所有 © Pleiades Publishing, Ltd., 2016
##common.cookie##