Optimal continuous-discrete nonlinear finite memory filter with a discrete predictions


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the following problem: using the discrete time measurements of the state variables of a continuous stochastic object and obtain the most precise estimate of these variables. To accelerate the estimating process, we synthesize the optimal structure of a discrete final-dimensional nonlinear filter with a piecewise-constant prediction, remembering the last few measurements in its state vector. The dimension of this vector (i.e., the filter memory volume) can be selected arbitrarily to balance the desired measurement precision and available processing speed for the measurements. We obtain the mean-square optimal structure functions of the filter expressed via the corresponding probability distributions and a chain of Fokker—Planck—Kolmogorov equations to find those distributions. We describe the procedure to obtain the structural functions of the filter numerically by means of the Monte-Carlo method. Also, we provide simple numeric-analytic approximations to the proposed filters: they are compared with approximations to the known filters. An example of the construction of such approximations is considered.

Sobre autores

E. Rudenko

Moscow Aviation Institute (National Research University)

Autor responsável pela correspondência
Email: rudenkoevg@yandex.ru
Rússia, Moscow


Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies