Acesso aberto Acesso aberto  Acesso é fechado Acesso está concedido  Acesso é fechado Somente assinantes

Volume 49, Nº 8 (2016)

Genesis and Geography of Soils

The informativeness of coefficients a and b of the soil line for the analysis of remote sensing materials

Rukhovich D., Rukhovich A., Rukhovich D., Simakova M., Kulyanitsa A., Bryzzhev A., Koroleva P.

Resumo

The coefficients of the soil line are often taken into account in calculations of vegetation indices. These coefficients are usually calculated for the entire satellite image, or are taken as constants without any calculations. In both cases, the informativeness of these coefficients is low and insufficient for the needs of soil mapping. In our study, we calculated soil line coefficients at 8000 lattice points for the territory of Plavsk, Arsen’evsk, and Chern districts of Tula oblast on the basis of 34 Landsat 5, 7, and 8 images obtained in 1985–2014. In order to distinguish between the soil line calculated for a given image and the soil line calculated for lattice points on the basis of dozens of multitemporal images, we suggest that the latter can be referred to as the temporal soil line. The temporal soil line is described by a classical equation: NIR = RED a + b, where a is its slope relative to the horizontal axis (RED), and b is the Y-axis (NIR) intercept. Both coefficients were used to create soil maps. The verification of the maps was performed with the use of data on 1985 soil pits. The informativeness of these coefficients appeared to be sufficient for delineation of eight groups of soils of different taxonomic levels: soddy moderately podzolic soils, soddy slightly podzolic soils, soddy-podzolic soils, light gray forest soils, gray forest soils, dark gray forest soils, podzolized chernozems, and leached chernozems. The b coefficient proved to be more informative, as it allowed us to create the soil map precisely on its basis. In order to create the soil map on the basis of the a coefficient, we had to apply some threshold values of the b coefficient. The bare soil on each of Landsat scenes was separated with the help of the mask of agricultural fields and the notion of the spectral neighborhood of soil line (SNSL).

Eurasian Soil Science. 2016;49(8):831-845
pages 831-845 views

Modeling of the evolution of steppe chernozems and development of the method of pedogenetic chronology

Lisetskii F., Stolba V., Goleusov P.

Resumo

Geoarchaeological methods were used to study chronosequences of surface soils in the steppe zone and to trace soil evolution during the Late Holocene in northwestern Crimea. It was found that the morphological and functional “maturity” of the humus horizons in steppe chernozems of the Late Holocene was reached in about 1600–1800 yrs. After this, their development decelerated irreversibly. The maximum concentration of trace elements accumulated in these horizons in the course of pedogenesis was reached in 1400 yrs. A new method of pedogenetic chronology based on the model chronofunction of the development of irreversible results of pedogenesis over time is suggested. Original pedochronological data and growth functions—the most suitable models for simulating pedogenesis over the past three thousand years—suggest that the development of morphological features of soil as an organomineral natural body follows growth patterns established for biological systems.

Eurasian Soil Science. 2016;49(8):846-858
pages 846-858 views

Soil Chemistry

Transformation of humus substances in the long-drained surface-gleyed soddy-podzolic soils under conditions of pronounced microrelief and different agrogenic loads

Ovchinnikova M.

Resumo

The transformation of humus substances resulting from artificial drainage of the surface-gleyed soddy-podzolic soils under conditions of pronounced microtopography and different agrogenic loads was studied. The studied soil characteristics included acid–base conditions, the content and group composition of humus, the ratios between the fractions of humus acids, and optical density of humic acids. The features attesting to humus degradation were found in the soils of microdepressions periodically subjected to excessive surface moistening, in the soils of different landforms upon the construction of drainage trenches, and in the plowed non-fertilized soils. The response of humus characteristics to the changes in the ecological situation in the period of active application of agrochemicals for reclamation of the agrotechnogenically disturbed soils was traced. It was shown that the long-term dynamics of the particular parameters of the biological productivity of the soil depend on the hydrological and agrogenic factors, as well as on the weather conditions.

Eurasian Soil Science. 2016;49(8):859-867
pages 859-867 views

Effect of the physicochemical parameters of soils on the biological availability of natural and radioactive zinc

Anisimov V., Kochetkov I., Dikarev D., Anisimova L., Korneev Y., Frigidova L.

Resumo

The relationship between the main physicochemical properties of soils and the accumulation of natural Zn and 65Zn radionuclide has been studied, and the capacity of soils to limit the mobility of the element in the soil–plant system has been assessed. The contribution of each of the selected soil state parameters to the accumulation of zinc by barley has been determined, and the soil state parameters have been ranked. It has been found that the largest contributions to the variation of the resulting parameter (65Zn accumulation coefficient, Ka) are made by mobile Fe (25%), free carbonates (21%), and acid-soluble Zn (18%). The largest contributions to the ZnacKa are made by free carbonates (13%) and mobile Fe (8%). The contributions of physical clay and organic carbon in soils and qualitative composition of humic substances are almost similar (4% for each). No differences in the inactivating capacity of different soils (soddy-podzolic soils, gray forest soils, and chernozems) for 65Zn are observed. This is related to the fact that the transfer of 65Zn to plants is statistically significantly controlled by the contents of free carbonates, mobile iron, and potentially plantavailable forms of stable natural Zn (carrier of 65Zn) rather than the quantitative and qualitative composition of organic matter and the degree of dispersion of mineral particles. The analysis of the ZnacKa/65Zn Ka ratios has shown that the share of plant-available Zn in the acid-soluble form of the metal (1 M HCl) is 0.61 on the average for the studied soils, and its share in the total Zn content in the soils is only 0.14.

Eurasian Soil Science. 2016;49(8):868-878
pages 868-878 views

Lead isotope and trace element composition of urban soils in Mongolia

Tserenpil S., Sapkota A., Liu C., Peng J., Liu B., Segebade P.

Resumo

Lead (Pb) pollution in and around Ulaanbaatar is of national concern, given that the Mongolian capital is home to nearly half of the country’s entire population. By comparison, Mongolian countryside is a pristine environment because of its sparse population and low industrial activity. The concentration of Pb in urban soils (average of 39.1 mg kg–1) was twice the values found (average 18.6 mg kg–1) in background territories (i.e., Mongolian rural sites). Furthermore, Pb contamination was examined by using Pb stable isotopic composition, and covariance of Pb isotopic ratios showed two groups between rural and urban soils as pristine and disturbed sites. The 206Pb/207Pb ratio, the most prominent fingerprint for Pb pollution, was 1.163–1.185 for the urban whereas values for rural soils (1.186–1.207) were analogue to the regional Pb isotopic signatures. Local coal sources and their combustion products, one of the potential Pb pollution sources in Ulaanbaatar, have significant radiogenic properties in terms of Pb isotopic composition and revealed an average of 1.25 for 206Pb/207Pb and 19.551 for 206Pb/204Pb ratios. Thus, contributions from coal firing activity to Pb pollution lower than it was assumed, and smaller range of these values measured in urban soils may be attributed to the mixing of less radiogenic Pb as a constituent of the leaded gasolines.

Eurasian Soil Science. 2016;49(8):879-889
pages 879-889 views

Soil Physics

Rheological properties of typical chernozems (Kursk oblast) under different land uses

Khaidapova D., Chestnova V., Shein E., Milanovskii E.

Resumo

Rheological parameters of humus horizons from typical chernozems under different land use—on a virgin land (unmown steppe) and under an oak forest, long-term black fallow, and agricultural use—have been studied by the amplitude sweep method with an MCR-302 modular rheometer at water contents corresponding to swelling limit and liquid limit. From the curves of elastic and viscous moduli, the ranges of elastic and viscoelastic (plastic) behavior of soil pastes—as well as that of transition from viscoelastic to viscous behavior—have been determined. It has been shown that the rheological behavior is largely determined by the content of organic matter, which can act as a binding agent structuring the interparticle bonds and as a lubricant in the viscous-flow (plastic) state of soil pastes. Soil samples enriched with organic matter (virgin land, oak forest, forest belt) have a more plastic behavior and a higher resistance to loads. Soil samples with the lower content of organic matter (long-term fallow, plowland) are characterized by a more rigid cohesion of particles and a narrower range of load resistance. Soil pastes at the water content of liquid limit have a stronger interparticle cohesion and a more brittle behavior than at the water content of swelling limit. Methodological aspects of testing soil pastes at the constant sample thickness and the controlled normal load have been considered. For swelling soil samples, tests under controlled normal load are preferred.

Eurasian Soil Science. 2016;49(8):890-897
pages 890-897 views

Physical properties of soils in Rostov agglomeration

Gorbov S., Bezuglova O., Abrosimov K., Skvortsova E., Tagiverdiev S., Morozov I.

Resumo

Physical properties of natural and anthropogenically transformed soils of Rostov agglomeration were examined. The data obtained by conventional methods and new approaches to the study of soil physical properties (in particular, tomographic study of soil monoliths) were used for comparing the soils of different functional zones of the urban area. For urban territories in the steppe zone, a comparison of humus-accumulative horizons (А, Asod, Ap, and buried [A] horizons) made it possible to trace tendencies of changes in surface soils under different anthropogenic impacts and in the buried and sealed soils. The microtomographic study demonstrated differences in the bulk density and aggregation of urban soils from different functional zones. The A horizon in the forest-park zone is characterized by good aggregation and high porosity, whereas buried humus-accumulative horizons of anthropogenically transformed soils are characterized by poor aggregation and low porosity. The traditional parameters of soil structure and texture also proved to be informative for the identification of urban pedogenesis.

Eurasian Soil Science. 2016;49(8):898-907
pages 898-907 views

Morphology and physical properties of soil material in cryogenic cracks of permafrost-affected meadow-chernozemic soils of the Trans-Baikal Region

Tsybenov Y., Chimitdorzhieva G., Chimitdorzhieva E., Egorova R., Mil’kheev E., Davydova T., Korsunova T.

Resumo

Meadow-chernozemic soils (Turbic Chernozems Molliglossic) in the western Trans-Baikal Region are dissected by large cryogenic cracks penetrating to the depth of 100–120 cm and filled with humified material. The depth of humus pockets is 50–80 cm, and their width in the upper part is 50–90 cm. The lower boundary of most of the humus pockets lies at the depth of 60–70 cm. The development of cryogenic cracks proceeded due to their penetration into the frozen ground, which is evidenced by their sharply narrowing lower part. The fraction of physical clay (<0.01 mm) constitutes a considerable part of the material filling the cracks, which explains the significant humus content in this material. The contents of humus and adsorbed bases sharply decrease down through the soil profile in the soil mass between the cracks and remain relatively stable in the material filling the cracks. The soil mass in humus pockets is less compact that that in the background soil mass at the same depth, which is explained by the higher humus content in the pockets. Humified soil material in the pockets is also characterized by a higher porosity and, hence, higher water permeability than the surrounding soil mass.

Eurasian Soil Science. 2016;49(8):908-914
pages 908-914 views

Assessment of some soil thermal conductivity models via variations in temperature and bulk density at low moisture range

Mahdavi S., Neyshabouri M., Fujimaki H.

Resumo

Simulation of heat transfer in soil under steady and unsteady situations requires reliable estimate of soil thermal conductivity (λ) at varying environmental conditions. In the current work several soil thermal conductivity predicting models including I) de Vries, II) Campbell, III) combined de Vries and Campbell and IV) de Vries-Nobre were evaluated for the four soils of coarse sand, sandy loam, loam and clay loam textured at varying in temperature and bulk density at low moisture range. Thermal conductivities measured by the cylindrical probe method served as the reference for models assessment. Results showed that approximately same thermal conductivities obtained by the five methods at low moisture range (θ ≤ 0.05 m3/m3). Also the de Vries and de Vries-Campbell models produced accurate than Campbell and de vries-Nobre models. The accuracy of the two models increased with soil compaction but decreased with temperature rise. Campbell model showed more reliability at higher (311.16 and 321.16 K) temperatures; but its accuracy declined with soil compaction in current work. It seems that assuming needle shape for the soil particles is far away from the reality whereas assuming spherical shapes may be more realistic and produced more satisfactory prediction of thermal conductivity. The compaction would alter particle arrangement and may increase the contact area of particles; and then make them behave more or less spherical shape.it seems thermal conductivity in solid particles increase via increasing in temperature. Since a modified mineral shape factor, gm, was developed as a combination between sphere and needle according to geometric mean particle diameter as well as bulk density and temperature as modifying factors. This factor increased the accuracy of de Vries-Nobre model up to 10.37%. Regarding nonlinear regression model, moisture content, bulk density, temperature and quartz content demonstrated significant effect on soil thermal conductivity in our investigation.

Eurasian Soil Science. 2016;49(8):915-925
pages 915-925 views

Soil Biology

Carbon emission from the soil surface in a mature blueberry pine forest of the middle taiga (Republic of Komi)

Osipov A.

Resumo

Data on the input of plant falloff and organic matter decomposition on the surface of the peaty podzolic-gleyic humus-illuvial (Gleyic Podzol) soil under a mature blueberry pine forest in the middle taiga are presented. The fractional composition of the falloff was determined, and constants of decomposition for its components were calculated. The carbon flux to the atmosphere due to the mineralization of plant residues is estimated at 251 g/m2. A close positive correlation (r = 0.71; P < 0.05) was found between the carbon dioxide emission measured using a gas analyzer and the soil temperature at the depth of 10 cm. The CO2 emission for a growing period calculated from the data on its dependence on soil temperature in different years varied from 243 to 313 g C/m2 and was related to weather conditions.

Eurasian Soil Science. 2016;49(8):926-933
pages 926-933 views

The structure of fungal biomass and diversity of cultivated micromycetes in Antarctic soils (progress and Russkaya Stations)

Marfenina O., Nikitin D., Ivanova A.

Resumo

The distribution of the fungal biomass and diversity of cultivated microscopic fungi in the profiles of some soils from East (Progress Station, valleys of the Larsemann Hills oasis) and West (Russkaya Station, the Marie Byrd Land) Antarctica regions were studied. The structure of the biomass (spore/mycelium and live cells/dead cells) was analyzed by fluorescence microscopy with staining using a set of coloring agents: calcofluor white, ethidium bromide, and fluorescein diacetate. The species composition of the cultivated microscopic fungi was determined on Czapek’s medium. The fungal biomass in the soils studied is not high (on the average, 0.3 mg/g of soil); the greatest biomass (0.6 mg/g) was found in the soil samples with plant residues. The fungal biomass is mainly (to 70%) represented by small (to 2.5 μm) spores. About half of the fungal biomass is composed of living cells. There are differences in the distribution of the fungal biomass within the profiles of different primitive soils. In the soil samples taken under mosses and lichens, the maximal biomass was registered in the top soil horizons. In the soils with the peat horizon under stone pavements, the greatest fungal biomass was registered in the subsurface horizons. Thirty-eight species of cultivated microscopic fungi were isolated from the soils studied. Species of the genus Penicillium and Phoma herbarum predominated.

Eurasian Soil Science. 2016;49(8):934-941
pages 934-941 views

Soil Erosion

Regional modeling of wind erosion in the North West and South West of Iran

Mirmousavi S.

Resumo

About two-thirds of the Iran’s area is located in the arid and semiarid region. Lack of soil moisture and vegetation is poor in most areas can lead to soil erosion caused by wind. So that the annual suffered severe damage to large areas of rich soils. Modeling studies of wind erosion in Iran is very low and incomplete. Therefore, this study aimed to wind erosion modeling, taking into three factors: wind speed, vegetation and soil types have been done. Wind erosion sensitivity was modeled using the key factors of soil sensitivity, vegetation cover and wind erodibility as proxies. These factors were first estimated separately by factor sensitivity maps and later combined by fuzzy logic into a regional-scale wind erosion sensitivity map. Large areas were evaluated by using publicly available datasets of remotely sensed vegetation information, soil maps and meteorological data on wind speed. The resulting estimates were verified by field studies and examining the economic losses from wind erosion as compensated by the state insurance company. The spatial resolution of the resulting sensitivity map is suitable for regional applications, as identifying sensitive areas is the foundation for diverse land development control measures and implementing management activities.

Eurasian Soil Science. 2016;49(8):942-953
pages 942-953 views

Degradation, Rehabilitation, and Conservation of Soils

An experience in regional estimates of changes in soil carbon pools of the southern taiga and forest-steppe during the historical period

Chernova O., Ryzhova I., Podvezennaya M.

Resumo

Regional estimates of changes in soil organic carbon (SOC) pools during the historical period were obtained according to a unified approach for Kostroma (southern taiga) and Kursk (forest-steppe) oblasts. The potential pools of soil carbon were calculated with due account for the classification position of particular soils, their texture, and the character of natural vegetation. In the estimates of actual SOC pools, land use patterns and the age structure of forest stands were taken into account. It was shown that modern pools of organic carbon in the soils of Kostroma oblast are only 1–2% smaller than the potential pools; for the soils of Kursk oblast, this difference reaches 23–27%. Mean weighted values of the actual SOC contents in these oblasts decreased by 0.1–0.2 and 6.5–7.6 kg C/m2 in comparison with the potential SOC contents, respectively, which is related to their environmental specificity and to different types of land use at present and in the historical past.

Eurasian Soil Science. 2016;49(8):954-967
pages 954-967 views

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies