A neural network method for restoring the initial impurity concentration distribution from data of ion sputter depth profiling


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

A new approach to solving the problem of restoring the initial impurity concentration distribution from data of ion sputter depth profiling is proposed. The algorithm of impurity profile restoration is based on using an artificial neural network with the input signals representing surface concentrations of impurity determined at sequential moments of sputter depth profiling. The artificial neural network is trained for various depths and thicknesses of the impurity-containing layer and various values of parameters of the adopted model equation of diffusion-like ion mixing.

Об авторах

D. Shyrokorad

Zaporozhye National Technical University

Автор, ответственный за переписку.
Email: slejpnir@zntu.edu.ua
Украина, Zaporozhye, 69063

G. Kornich

Zaporozhye National Technical University

Email: slejpnir@zntu.edu.ua
Украина, Zaporozhye, 69063

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).